skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koo, Yonghoe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Combination therapies using checkpoint inhibitors with immunostimulatory agonists have attracted great attention due to their synergistic therapeutic effects for cancer treatment. However, such combination immunotherapies require specific timing of doses to show sufficient antitumor efficacy. Sequential treatment usually requires multiple administrations of the individual drugs at specific time points, thus increasing the complexity of the drug regimen and compromising patient compliance. Here, we introduce an injectable porous silicon microparticle (pSiMP) for combination cancer immunotherapy where its multilayered nanopore structure was electrochemically programmed to achieve release of three distinct immunomodulatory drugs in the right sequence at the desired time. We find the optimal sequential treatment timeline of stimulator of interferon genes (STING) agonist, anti-OX40 antibody (aOX40), and anti-PD-1 antibody (aPD-1) for immunosuppressive tumors. We show that a single intratumoral injection of a cocktail of release-programmed pSiMPs coloaded with each antibody and a STING agonist significantly suppresses the tumor growth compared to conventional treatment involving sequential bolus injections, or an injection of pSiMPs configured to release all drugs at the same time, with no delay. With the timely release of immunomodulatory drugs, the programmable pSiMPs offer an effective treatment strategy for combination immunotherapy. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  2. Abstract BackgroundBasic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. ResultsIn this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtainedviaa simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. ConclusionConsequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration. 
    more » « less